236 research outputs found

    Finely tuned temporal and spatial delivery of GDNF promotes enhanced nerve regeneration in a long nerve defect model

    Get PDF
    The use of growth factors, such as glial cell line-derived neurotrophic factor (GDNF), for the treatment of peripheral nerve injury has been useful in promoting axon survival and regeneration. Unfortunately, finding a method that delivers the appropriate spatial and temporal release profile to promote functional recovery has proven difficult. Some release methods result in burst release profiles too short to remain effective over the regeneration period; however, prolonged exposure to GDNF can result in axonal entrapment at the site of release. Thus, GDNF was delivered in both a spatially and temporally controlled manner using a two-phase system comprised of an affinity-based release system and conditional lentiviral GDNF overexpression from Schwann cells (SCs). Briefly, SCs were transduced with a tetracycline-inducible (Tet-On) GDNF overexpressing lentivirus before transplantation. Three-centimeter acellular nerve allografts (ANAs) were modified by injection of a GDNF-releasing fibrin scaffold under the epineurium and then used to bridge a 3 cm sciatic nerve defect. To encourage growth past the ANA, GDNF-SCs were transplanted into the distal nerve and doxycycline was administered for 4, 6, or 8 weeks to determine the optimal duration of GDNF expression in the distal nerve. Live imaging and histomorphometric analysis determined that 6 weeks of doxycycline treatment resulted in enhanced regeneration compared to 4 or 8 weeks. This enhanced regeneration resulted in increased gastrocnemius and tibialis anterior muscle mass for animals receiving doxycycline for 6 weeks. The results of this study demonstrate that strategies providing spatial and temporal control of delivery can improve axonal regeneration and functional muscle reinnervation

    Long-term functional recovery after facial nerve transection and repair in the rat

    Get PDF
    BACKGROUND: The rodent model is commonly used to study facial nerve injury. Because of the exceptional regenerative capacity of the rodent facial nerve, it is essential to consider the timing when studying facial nerve regeneration and functional recovery. Short-term functional recovery data following transection and repair of the facial nerve has been documented by our laboratory. However, because of the limitations of the head fixation device, there is a lack of long-term data following facial nerve injury. The objective of this study was to elucidate the long-term time course and functional deficit following facial nerve transection and repair in a rodent model. METHODS: Adult rats were divided into group 1 (controls) and group 2 (experimental). Group 1 animals underwent head fixation, followed by a facial nerve injury, and functional testing was performed from day 7 to day 70. Group 2 animals underwent facial nerve injury, followed by delayed head fixation, and then underwent functional testing from months 6 to 8. RESULTS: There was no statistical difference between the average whisking amplitudes in group 1 and group 2 animals. CONCLUSION: Functional whisking recovery 6 months after facial nerve injury is comparable to recovery within 1 to 4 months of transection and repair, thus the ideal window for evaluating facial nerve recovery falls within the 4 months after injury

    Axonal growth arrests after an increased accumulation of Schwann cells expressing senescence markers and stromal cells in acellular nerve allografts

    Get PDF
    Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β(+)) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin(+)/S100β(−)/CD68(−) cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest (“stressed” ANAs). These stressed ANAs contained mainly S100β(+)/p16(+) cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no deficits in axonal extension. Overall, this evidence demonstrates that long ANAs are repopulated with increased p16(+) Schwann cells and stromal cells compared to short ANAs, suggesting a role for these cells in poor axonal regeneration across nerve constructs

    Intraneural synovial sarcoma of the median nerve

    Get PDF
    Synovial sarcomas are soft-tissue malignancies with a poor prognosis and propensity for distant metastases. Although originally believed to arise from the synovium, these tumors have been found to occur anywhere in the body. We report a rare case of synovial sarcoma arising from the median nerve. To our knowledge, this is the twelfth reported case of intraneural synovial sarcoma, and only the fourth arising from the median nerve. Because the diagnosis may not be apparent until after pathological examination of the surgical specimen, synovial sarcoma should be kept in mind when dealing with what may seem like a benign nerve tumor

    A trial protocol for the effectiveness of digital interventions for preventing depression in adolescents : The Future Proofing Study

    Get PDF
    Background: Depression frequently first emerges during adolescence, and one in five young people will experience an episode of depression by the age of 18 years. Despite advances in treatment, there has been limited progress in addressing the burden at a population level. Accordingly, there has been growing interest in prevention approaches as an additional pathway to address depression. Depression can be prevented using evidence-based psychological programmes. However, barriers to implementing and accessing these programmes remain, typically reflecting a requirement for delivery by clinical experts and high associated delivery costs. Digital technologies, specifically smartphones, are now considered a key strategy to overcome the barriers inhibiting access to mental health programmes. The Future Proofing Study is a large-scale school-based trial investigating whether cognitive behaviour therapies (CBT) delivered by smartphone application can prevent depression. Methods: A randomised controlled trial targeting up to 10,000 Year 8 Australian secondary school students will be conducted. In Stage I, schools will be randomised at the cluster level either to receive the CBT intervention app (SPARX) or to a non-active control group comparator. The primary outcome will be symptoms of depression, and secondary outcomes include psychological distress, anxiety and insomnia. At the 12-month follow-up, participants in the intervention arm with elevated depressive symptoms will participate in an individual-level randomised controlled trial (Stage II) and be randomised to receive a second CBT app which targets sleep difficulties (Sleep Ninja) or a control condition. Assessments will occur post intervention (both trial stages) and at 6, 12, 24, 36, 48 and 60 months post baseline. Primary analyses will use an intention-to-treat approach and compare changes in symptoms from baseline to follow-up relative to the control group using mixed-effect models. Discussion: This is the first trial testing the effectiveness of smartphone apps delivered to school students to prevent depression at scale. Results from this trial will provide much-needed insight into the feasibility of this approach. They stand to inform policy and commission decisions concerning if and how such programmes should be deployed in school-based settings in Australia and beyond
    corecore